skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rezqalla, Mohammad A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Regular user interface screens can display dense and detailed information to human users but miss out on providing somatosensory stimuli that take full advantage of human spatial cognition. Therefore, the development of new haptic displays can strengthen human-machine communication by augmenting visual communication with tactile stimulation needed to transform information from digital to spatial/physical environments. Shape-changing interfaces, such as pin arrays and robotic surfaces, are one method for providing this spatial dimension of feedback; however, these displays are often either limited in maximum extension or require bulky mechanical components. In this paper, we present a compact pneumatically actuated soft growing pin for inflatable haptic interfaces. Each pin consists of a rigid, air-tight chamber, an inflatable fabric pin, and a passive spring-actuated reel mechanism. The device behavior was experimentally characterized, showing extension to 18.5 cm with relatively low pressure input (1.75 psi, 12.01 kPa), and the behavior was compared to the mathematical model of soft growing robots. The results showed that the extension of the soft pin can be accurately modeled and controlled using pressure as input. Finally, we demonstrate the feasibility of implementing individually actuated soft growing pins to create an inflatable haptic surface. 
    more » « less